Sounds glam, right? Gecko design?
At the 2012 SICB in Charleston, Skye presented research that shows how traits that improve bite force in geckos have negative impacts on the gecko's sprint speed. Meaning that males who are better fighters might also be less adept at escaping predators ...
Costly design indeed.
Let's learn more by having a look at Skye's abstract, with {comments in brackets from me}.
The evolution of exaggerated ornaments and armaments is driven by the benefits accrued to reproductive success and by the costs imposed on viability. {This means that} when traits are required to perform multiple functions that are important to both reproduction and viability, trade-offs can result in a compromised phenotype.
{Imagine, for example, a species of bird in which females are more likely to mate with males that have larger tails; but males with larger tails are more likely to be captured by predators. Both reproductive potential and survival are important to the male - so evolutionarily, the bird may end up compromising on tail length to make sure he both reproduces and survives.}
{Intuitively, we expect that exaggerated male traits (like super-long tails) would decrease locomotor capacity, resulting in lower survival rates due to predation.} Despite only mixed empirical support for such locomotor costs, recent studies suggest these costs may be masked as a result of the evolution of compensatory mechanisms that offset any detrimental effects.
{What are compensatory mechanisms? Imagine if that bird with the long tail-feathers developed longer wings, that enhanced its flying abilities. It might offset some of the survival costs of the long tail.}
In this study, {Skye} provides a comprehensive assessment of the importance of potential locomotor costs that are associated with improved male-male competitive ability by simultaneously testing for locomotor trade-offs and compensatory mechanisms. For males of the Asian house gecko (Hemidactylus frenatus), both fighting capacity and escape performance are likely to place conflicting demands on an individual’s phenotype.
Males that are highly territorial and aggressive are more likely to require greater investment in jaw size/strength in order to compete with rival males; {Skye} found that males with larger heads had stronger bites and showed greater prey-capture and fighting capacity. This performance trade-off was amplified for male geckoes with larger heads when {they were} sprinting up inclines.
{So, what does this mean? Geckoes with large heads are better at fighting and better at capturing prey, but may be worse at evading predators themselves. A compensatory mechanism would be something - like longer legs - that would enhance their ability to avoid predation.} {However, Skye} found little evidence for compensatory mechanisms that off-set the functional trade-off between bite force and sprint speed.
Ongoing work in this area includes testing the survival of male geckoes with different sized heads in controlled-but-natural conditions.
At the 2012 SICB in Charleston, Skye presented research that shows how traits that improve bite force in geckos have negative impacts on the gecko's sprint speed. Meaning that males who are better fighters might also be less adept at escaping predators ...
Costly design indeed.
Let's learn more by having a look at Skye's abstract, with {comments in brackets from me}.
Trade-offs and compensatory traits: bite force and sprint speed pose conflicting demands on the design of male geckos (Hemidactylus frenatus)
by Skye Cameron, Melissa Wynn and Robbie Wilson
The evolution of exaggerated ornaments and armaments is driven by the benefits accrued to reproductive success and by the costs imposed on viability. {This means that} when traits are required to perform multiple functions that are important to both reproduction and viability, trade-offs can result in a compromised phenotype.
{Imagine, for example, a species of bird in which females are more likely to mate with males that have larger tails; but males with larger tails are more likely to be captured by predators. Both reproductive potential and survival are important to the male - so evolutionarily, the bird may end up compromising on tail length to make sure he both reproduces and survives.}
image |
{Intuitively, we expect that exaggerated male traits (like super-long tails) would decrease locomotor capacity, resulting in lower survival rates due to predation.} Despite only mixed empirical support for such locomotor costs, recent studies suggest these costs may be masked as a result of the evolution of compensatory mechanisms that offset any detrimental effects.
{What are compensatory mechanisms? Imagine if that bird with the long tail-feathers developed longer wings, that enhanced its flying abilities. It might offset some of the survival costs of the long tail.}
In this study, {Skye} provides a comprehensive assessment of the importance of potential locomotor costs that are associated with improved male-male competitive ability by simultaneously testing for locomotor trade-offs and compensatory mechanisms. For males of the Asian house gecko (Hemidactylus frenatus), both fighting capacity and escape performance are likely to place conflicting demands on an individual’s phenotype.
image |
image |
Ongoing work in this area includes testing the survival of male geckoes with different sized heads in controlled-but-natural conditions.